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We present efficient and accurate numerical methods for computing the ground state and 
dynamics of the nonlinear Schrödinger equation (NLSE) with nonlocal interactions based 
on a fast and accurate evaluation of the long-range interactions via the nonuniform fast 
Fourier transform (NUFFT). We begin with a review of the fast and accurate NUFFT based 
method in [29] for nonlocal interactions where the singularity of the Fourier symbol 
of the interaction kernel at the origin can be canceled by switching to spherical or 
polar coordinates. We then extend the method to compute other nonlocal interactions 
whose Fourier symbols have stronger singularity at the origin that cannot be canceled 
by the coordinate transform. Many of these interactions do not decay at infinity in 
the physical space, which adds another layer of complexity since it is more difficult to 
impose the correct artificial boundary conditions for the truncated bounded computational 
domain. The performance of our method against other existing methods is illustrated 
numerically, with particular attention on the effect of the size of the computational 
domain in the physical space. Finally, to study the ground state and dynamics of the 
NLSE, we propose efficient and accurate numerical methods by combining the NUFFT 
method for potential evaluation with the normalized gradient flow using backward Euler 
Fourier pseudospectral discretization and time-splitting Fourier pseudospectral method, 
respectively. Extensive numerical comparisons are carried out between these methods and 
other existing methods for computing the ground state and dynamics of the NLSE with 
various nonlocal interactions. Numerical results show that our scheme performs much 
better than those existing methods in terms of both accuracy and efficiency.

© 2015 Elsevier Inc. All rights reserved.

* Corresponding author at: Wolfgang Pauli Institute c/o Fak. Mathematik, University Wien, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria.
E-mail addresses: matbaowz@nus.edu.sg (W. Bao), shidong.jiang@njit.edu (S. Jiang), qinglin.tang@inria.fr (Q. Tang), yong.zhang@univie.ac.at (Y. Zhang).
URL: http://www.math.nus.edu.sg/~bao/ (W. Bao).
http://dx.doi.org/10.1016/j.jcp.2015.04.045
0021-9991/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2015.04.045
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:matbaowz@nus.edu.sg
mailto:shidong.jiang@njit.edu
mailto:qinglin.tang@inria.fr
mailto:yong.zhang@univie.ac.at
http://www.math.nus.edu.sg/~bao/
http://dx.doi.org/10.1016/j.jcp.2015.04.045
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2015.04.045&domain=pdf


W. Bao et al. / Journal of Computational Physics 296 (2015) 72–89 73
1. Introduction

In this paper, we present efficient and accurate numerical methods and compare them with existing numerical methods 
for computing the ground state and dynamics of the nonlinear Schrödinger equation (NLSE). In dimensionless form, the 
NLSE with a nonlocal (long-range) interaction in d dimensions (d = 3, 2, 1) is

i∂tψ(x, t) =
[
−1

2
� + V (x) + β ϕ(x, t)

]
ψ(x, t), x ∈Rd, t > 0, (1.1)

ϕ(x, t) =
(

U ∗ |ψ |2
)

(x, t), x ∈Rd, t ≥ 0; (1.2)

with the initial data

ψ(x, t = 0) = ψ0(x), x ∈Rd. (1.3)

Here, t is time, x is the spatial coordinates, ψ(x, t) is the complex-valued wave-function, V (x) is a given real-valued external 
potential, β is a dimensionless interaction constant (positive for repulsive interaction and negative for attractive interaction), 
and ϕ(x, t) is a real-valued nonlocal (long-range) interaction which is defined as the convolution of an interaction kernel 
U (x) and the density function ρ(x, t) = |ψ(x, t)|2. The NLSE with the nonlocal interaction (1.1)–(1.2) has been widely used in 
modeling a variety of problems arising from quantum physics and chemistry to materials science and biology. It is nonlinear, 
dispersive and time transverse invariant, i.e., if V (x) → V (x) +α and ϕ(x, t) → ϕ(x, t) + δ, then ψ(x, t) → ψ(x, t)e−i(α+βδ)t , 
which immediately implies that the physical observables such as the density ρ(x, t) are kept unchanged. In addition, it con-
serves the mass and energy defined as follows:

N(ψ(·, t)) :=
∫
Rd

|ψ(x, t)|2dx ≡
∫
Rd

|ψ(x,0)|2dx =
∫
Rd

|ψ0(x)|2dx = N(ψ0), t ≥ 0, (1.4)

E(ψ(·, t)) :=
∫
Rd

[
1

2
|∇ψ(x, t)|2 + V (x)|ψ(x, t)|2 + 1

2
β ϕ(x, t)|ψ(x, t)|2

]
dx ≡ E(ψ0). (1.5)

One of the most important nonlocal interactions in applications is the Coulomb interaction whose interaction kernel in 
3D/2D is given as

UCou(x) =
{ 1

4π |x| ,
1

2π |x| ,
⇐⇒ ÛCou(k) =

{ 1
|k|2 , d = 3,

1
|k| , d = 2,

x,k ∈ Rd, (1.6)

where f̂ (k) = ∫
Rd f (x) e−ik·x dx is the Fourier transform of f (x) for x, k ∈Rd . In 3D, the Coulomb interaction kernel UCou(x)

is exactly the Green’s function of the Laplace operator and thus the nonlocal Coulomb interaction ϕ in (1.2) also satisfies 
the Poisson equation in 3D

−�ϕ(x, t) = |ψ(x, t)|2, x ∈R3, lim|x|→∞ϕ(x, t) = 0, t ≥ 0. (1.7)

In this case, (1.1)–(1.2) is also referred to as the 3D Schrödinger–Poisson system (SPS) which was derived from the lin-
ear Schrödinger equation for a many-body (e.g., N electrons) quantum system with binary Coulomb interaction between 
different electrons via the “mean field limit” [12,13,23]. It has important applications in modeling semiconductor devices 
and calculating electronic structures in materials simulation and design. On the other hand, the Coulomb interaction kernel 
U (x) in 2D is the Green’s function of the square-root-Laplace operator instead of the Laplace operator and thus the nonlocal 
Coulomb interaction ϕ in (1.2) also satisfies the fractional Poisson equation in 2D√−�ϕ(x, t) = |ψ(x, t)|2, x ∈R2, lim|x|→∞ϕ(x, t) = 0, t ≥ 0. (1.8)

In this case, (1.1)–(1.2) could be obtained from the 3D SPS under an infinitely strong external confinement in the 
z-direction [9,14]. This model could be used for modeling 2D materials such as graphene and “electron sheets” [20].

Another type of interaction from applications is that the interaction kernel U (x) is taken as the Green’s function of the 
Laplace operator in 3D/2D/1D [41]

ULap(x) =

⎧⎪⎪⎨⎪⎪⎩
1

4π |x| , d = 3,

− 1
2π ln |x|, d = 2,

− 1
2 |x|, d = 1,

⇐⇒ ÛLap(k) = 1

|k|2 , x,k ∈Rd. (1.9)

When d = 3, ULap(x) = UCou(x) for x ∈ R3. When d = 2, the nonlocal interaction ϕ in (1.2) with (1.9) satisfies the Poisson 
equation in 2D with the far-field condition

−�ϕ(x, t) = |ψ(x, t)|2, x ∈R2, lim

[
ϕ(x, t) + C0 ln |x|

]
= 0, t ≥ 0; (1.10)
|x|→∞ 2π
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and when d = 1 with x = x, it satisfies the Poisson equation in 1D with the far-field condition

−∂xxϕ(x, t) = |ψ(x, t)|2, x ∈R, lim
x→±∞

[
ϕ(x, t) + 1

2
(C0|x| ∓ C1)

]
= 0, t ≥ 0, (1.11)

where C0 = ∫
Rd |ψ(x, t)|2dx = |̂ψ |2(0, t) ≡ ∫

Rd |ψ0(x)|2dx = |̂ψ0|2(0) = N(ψ0) and C1 = ∫
R

x|ψ(x, t)|2 dx = ̂(x|ψ |2)(0, t), 
which indicate that the nonlocal interaction ϕ(x, t) → −∞ as |x| → ∞ in 2D/1D. In fact, when d = 2 or d = 1, (1.1)–(1.2)
with (1.9) is also referred to as the 2D or 1D SPS. They could be obtained from the 3D SPS by integrating the 3D Coulomb in-
teraction kernel UCou(x) along the z-line or (y, z)-plane under the assumption that the electrons are uniformly distributed 
in one or two spatial dimensions, respectively. The 2D/1D SPS is usually used for modeling 2D “electron sheets” and 1D 
“quantum wires”, respectively, as well as lower dimensions semiconductor devices [32].

Recently, the following nonlocal interaction kernels in 2D/1D were obtained from the 3D SPS under strongly confining 
external potentials in the z-direction and (y, z)-plane, respectively

U ε
Con(x) =

⎧⎪⎪⎨⎪⎪⎩
2

(2π)3/2

∫ ∞
0

e− u2
2√|x|2+ε2u2

du, x ∈ R2

1
4

∫ ∞
0

e− u
2√|x|2+ε2u

du, x ∈ R

⇐⇒ Û ε
Con(k) =

⎧⎪⎪⎨⎪⎪⎩
2
π

∫ ∞
0

e− ε2s2
2

|k|2+s2 ds, k ∈R2,

1
2

∫ ∞
0

e−ε2s/2

|k|2+s
ds, k ∈R,

(1.12)

where 0 < ε 
 1 is a dimensionless constant describing the ratio of the anisotropic confinement in different directions in 
the original 3D SPS [9]. In this case, the convolution (1.2) for the nonlocal interaction ϕ can no longer be re-formulated into 
a partial differential equation. For other nonlocal interactions considered in quantum chemistry and dipole Bose–Einstein 
condensation, e.g., the dipole–dipole interaction, we refer to [4,5,17,29] and references therein.

The ground state φg of the NLSE is defined as follows:

φg = argmin
φ∈S

E(φ), where S := {φ(x) | ‖φ‖2 :=
∫
Rd

|φ(x)|2dx = 1, E(φ) < ∞}. (1.13)

For the existence, uniqueness and properties of the ground state as well as the well-posedness and dynamical properties of 
the NLSE, we refer to [36,18,15,4,14,19,33,34] and references therein.

In order to numerically compute the ground state of (1.13) and the dynamics of (1.1)–(1.2), one of the key difficulties is 
to efficiently and accurately evaluate the nonlocal interaction (1.2) for a given density ρ = |ψ |2. Note that

ϕ(x, t) =
∫
Rd

U (x − y)ρ(y, t)dy = 1

(2π)d

∫
Rd

Û (k) ρ̂(k, t) eik·x dk, x ∈Rd, t ≥ 0, (1.14)

it is natural to evaluate ϕ(x, t) via the standard fast Fourier transform (FFT) using a uniform grid on a bounded compu-
tational domain 
 [11]. However, the accuracy of this approach is hampered due to the singularity of Û (k) at the origin. 
Indeed, for the 3D Coulomb interaction, this method is equivalent to solving the Poisson equation (1.7) on 
 with peri-
odic boundary condition via the Fourier spectral method. It is easy to see that this approach is inconsistent due to the 
inappropriate periodic boundary condition:

0 <

∫



|ψ(x, t)|2dx = −
∫



�ϕ(x, t)dx = −
∫
∂


∂ϕ

∂n
ds = 0. (1.15)

Thus, this approach suffers from no convergence in terms of the mesh size of partitioning any fixed 
 (a phenomenon 
known as “numerical locking” in the literature); and its convergence is very slow, e.g., linearly convergent for the 3D/2D 
Coulomb interaction, in terms of the size of 
 because ϕ decays like 1

|x| . To overcome this “numerical locking”, a numerical 
method was proposed by imposing the homogeneous Dirichlet boundary condition on ∂
, and then solving the truncated 
problem via the discrete sine transform (DST) [6,17,41]. This method avoids numerically the singularity of Û (k) at the 
origin and thus significantly improves the accuracy in the evaluation of the Coulomb interaction potential. However, the 
truncation error of this method still decays only linearly in terms of the size of 
 due to the slow decaying property of the 
Coulomb potential. Thus when high accuracy is required, the bounded computational domain 
 must be chosen very large, 
which increases significantly the computational cost in both memory and CPU time for evaluating the nonlocal interaction 
potential (1.2) and solving the NLSE (1.1). Moreover, for the purpose of solving the NLSE, a much smaller computational 
domain actually suffices since the wave-function ψ decays exponentially fast when |x| → ∞ in most applications. We would 
also like to point out that this method could not be extended to the cases where the potential in (1.1) either does not decay 
at infinity (for example, 1D/2D cases of (1.9)) or cannot be converted to a PDE problem (as in (1.12)).

Recently, a fast and accurate NUFFT based method [29] was proposed to compute the Coulomb interaction (1.6) in 
3D/2D. The key observation there is that the singularity in the Fourier transform of the interaction kernel Û (k) at the 
origin can be canceled out with the Jacobian in spherical or polar coordinates, thus making the integrand in (1.14) smooth. 
The integral is then approximated via a high-order quadrature and the resulting discrete summation is evaluated via the 
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NUFFT. The algorithm has O (N log N) complexity with N the total number of unknowns in the physical space and achieves 
very high accuracy for the evaluation of Coulomb interactions [29]. The main aims of this paper are fourfold: (i) to extend 
the algorithm in [29] to evaluate the nonlocal interactions whose Fourier symbols have stronger singularity at the origin 
which cannot be canceled by coordinate transform; (ii) to compare numerically the newly developed NUFFT based method 
with those existing methods for nonlocal interaction evaluation; (iii) to propose efficient and accurate numerical methods 
for computing the ground state and dynamics of the NLSE (1.1)–(1.2) by incorporating the NUFFT based algorithm into the 
normalized gradient flow method and the time-splitting Fourier pseudospectral method, respectively, and (iv) to compare 
these two new schemes with those existing ones for computing the ground state and dynamics of the NLSE.

The paper is organized as follows. In Section 2, the NUFFT based algorithm in [29] for the evaluation of Coulomb inter-
action is reviewed and then extended for the case of general nonlocal interaction (1.2) whose kernel is taken as either (1.9)
or (1.12). Then, efficient and accurate numerical methods are proposed respectively in Section 3 and Section 4 to compute 
the ground state and dynamics of the NLSE (1.1)–(1.2). Finally, some concluding remarks are drawn in Section 5.

2. An algorithm for the evaluation of the nonlocal interaction via the NUFFT

In this section, we will propose a fast and accurate evaluation of the nonlocal interaction

u(x) = (U ∗ ρ)(x) = 1

(2π)d

∫
Rd

Û (k) ρ̂(k) eik·x dk, x ∈Rd, d = 3,2,1, (2.1)

where ρ(x) satisfying ρ̂(0) = ∫
Rd ρ(x)dx > 0 is a given nonnegative smooth density function that decays rapidly at far field. 

We will first briefly review the algorithm in [29] for fast and accurate evaluation of the Coulomb interactions, and then 
extend it to the cases where U (x) in (2.1) is taken as either (1.9) or (1.12).

2.1. Coulomb interactions in 3D/2D

When U (x) reads as (1.6), by truncating the integration domain in (2.1) into a bounded domain and adopting the spher-
ical/polar coordinates in 3D/2D in the Fourier (or phase) space, we have [29]

u(x) = 1

(2π)d

∫
Rd

ei k·x ÛCou(k) ρ̂(k)dk = 1

(2π)d

∫
Rd

1

|k|d−1
ei k·x ρ̂(k)dk

≈ 1

(2π)d

∫
|k|≤P

1

|k|d−1
eik·x ρ̂(k)dk

= 1

(2π)d

{ ∫ P
0

∫ π
0

∫ 2π
0 eik·x ρ̂(k) sin θ d|k|dθdφ, d = 3,∫ P

0

∫ 2π
0 eik·x ρ̂(k)d|k|dφ, d = 2,

x ∈ 
 ⊂ Rd. (2.2)

Here, P = O (1/ε0)
1/n , ε0 > 0 is the prescribed precision (e.g., ε0 = 10−10), and n is the decaying rate of ρ̂(k) at infinity 

(i.e., ρ̂(k) = O (|k|−n) as |k| → ∞). Correspondingly, we choose a bounded domain 
 large enough such that the truncation 
error of ρ(x) is negligible. It is easy to see that the singularity of the integrand at the origin in phase space is removed in 
spherical or polar coordinates. Thus, the above integral can be discretized using high order quadratures and the resulting 
summation can be evaluated efficiently via the NUFFT. This leads to an O (N log N) + O (M) algorithm where N is the total 
number of equispaced points in the physical space and M is the number of nonequispaced points in the Fourier space. 
However, although M is roughly the same order as N , the constant in front of O (M) (e.g., 24d for 12-digit accuracy) is 
much greater than the constant in front of O (N log N). This makes the algorithm considerably slower than the regular FFT, 
especially for three dimensional problems.

An improved algorithm is developed to reduce the computational cost in [29]. First, the integral in (2.2) is further split 
into two parts via a simple partition of unity:

u(x) ≈ 1

(2π)d

∫
|k|≤P

1

|k|d−1
eik·x ρ̂(k)dk

= 1

(2π)d

∫
|k|≤P

eik·x 1 − pd(k)

|k|d−1
ρ̂(k)dk + 1

(2π)d

∫
|k|≤P

eik·x pd(k)

|k|d−1
ρ̂(k)dk

≈ 1

(2π)d

∫
D

eik·x wd(k) ρ̂(k)dk + 1

(2π)d

∫
eik·x pd(k)

|k|d−1
ρ̂(k)dk := I1 + I2, x ∈ 
. (2.3)
|k|≤P
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Fig. 1. Two grids used in the Fourier domain in the improved algorithm in [29]: the regular grid on the left panel is used to compute I1 in (2.3) via the 
regular FFT; while the polar grid (confined in a small region centered at the origin) on the right panel is used to compute I2 in (2.3) via the NUFFT. Note 
that the number of points in the polar grid is O (1), thus keeping the interpolation cost in NUFFT minimal.

Here, D = {k = (k1, . . . , kd)
T
∣∣ − P ≤ k j ≤ P , j = 1, . . . , d} is a rectangular domain containing the ball B , the function pd(k) is 

chosen such that it is a C∞ function that decays exponentially fast as |k| → ∞ and the function wd(k) := 1−pd(k)

|k|d−1 is smooth 
for k ∈ Rd . We remark here that similar ideas by partition of unity to remove the singularity were also used for surface 
integral [16,22,24–27].

With this pd(k), I1 can be computed via the regular FFT and I2 can be evaluated via the NUFFT with a fixed (much 
fewer) number of irregular points in the Fourier space (see Fig. 1). Thus the interpolation cost in the NUFFT is reduced to 
O (1) and the cost of the overall algorithm is comparable to that of the regular FFT, with an oversampling factor (23 for 3D 
problems and 22–32 for 2D problems) in front of O (N log N).

2.2. Poisson potentials in 2D/1D

When U (x) is taken as (1.9) in 2D/1D, the algorithm discussed in the previous section cannot be applied directly to 
evaluate the Poisson potential u(x) due to the stronger singularity of ÛLap(k) at the origin. Obviously, the Poisson potential 
u(x) satisfies the Poisson equation −� u(x) = ρ(x) with the far field condition

lim|x|→∞

[
u(x) + ρ̂(0)

2π
ln |x|

]
= 0 (2.4)

for 2D problems and

lim
x→±∞

[
u(x) + 1

2

(
ρ̂(0)|x| ∓ (̂xρ)(0)

)]
= 0 (2.5)

for 1D problems, respectively.
Let us first consider the evaluation of the 2D Poisson potential. To overcome the above mentioned difficulties, we intro-

duce the auxiliary functions

G(x) = 1

2πσ 2
e
− |x|2

2σ2 , G1(x) = ρ̂(0) G(x) − (̂xρ)(0) · ∇xG(x), x ∈ R2, (2.6)

and the function u1(x) which satisfies the Poisson equation with the far-field condition:

−�u1(x) = G1(x), x ∈R2, lim|x|→∞

[
u1(x) + ρ̂(0)

2π
ln |x|

]
= 0. (2.7)

Here, σ > 0 is a parameter to be chosen later. Solving (2.7) via the convolution, we have

u1(x) = (ULap ∗ G1)(x) = ρ̂(0) u1,1(x) − (̂xρ)(0) · u1,2(x), x ∈ R2, (2.8)

where

u1,1(x) = (ULap ∗ G)(x), u1,2(x) = ∇x u1,1(x), x ∈R2. (2.9)

Note that G(x) is radially symmetric, i.e., G(x) = G(|x|) = G(r) with r = |x| ≥ 0 and u1,1(x) satisfies the Poisson equation

−�u1,1(x) = G(x), x ∈ R2, lim

[
u1,1(x) + 1

ln |x|
]

= 0. (2.10)
|x|→∞ 2π
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It is clear that u1,1(x) is also radially symmetric, i.e., u1,1(x) = u1,1(r). Thus, the Poisson equation (2.10) can be re-formulated 
as the following second order ODE:

−1

r
∂r(r∂ru1,1(r)) = G(r), 0 < r < ∞, lim

r→∞

[
u1,1(r) + 1

2π
ln r

]
= 0. (2.11)

Integrating the above ODE twice with the far-field boundary condition, we obtain

u1,1(x) =
⎧⎨⎩ − 1

4π

[
E1(

|x|2
2σ 2 ) + 2 ln(|x|)

]
, x �= 0,

1
4π

(
γe − ln(2σ 2)

)
, x = 0,

x ∈ R2, (2.12)

where E1(r) :=
∫ ∞

r t−1e−t dt for r > 0 is the exponential integral function [1] and γe ≈ 0.5772156649015328606 is the 
Euler–Mascheroni constant. Differentiating (2.12) leads to

u1,2(x) =
⎧⎨⎩ − 1

2π
x

|x|2
(

1 − e
− |x|2

2σ2

)
, x �= 0,

0, x = 0,

x ∈R2. (2.13)

Denote

u2(x) = u(x) − u1(x) ⇐⇒ u(x) = u1(x) + u2(x), x ∈R2. (2.14)

We have

−�u2(x) = ρ(x) − G1(x), x ∈R2, lim|x|→∞ u2(x) = 0. (2.15)

Solving the above problem via the Fourier integral, noticing (2.6) and using the fact that

∇kρ̂(0) = −i (̂xρ)(0) = −i

∫
R2

xρ(x)dx,

we obtain

u2(x) = (ULap ∗ (ρ − G1))(x) = 1

(2π)2

∫
R2

ρ̂(k) − Ĝ1(k)

|k|2 ei k·x dk

= 1

(2π)2

∫
R2

W (k)

|k| ei k·x dk ≈ 1

(2π)2

P∫
0

2π∫
0

W (k) ei k·x d|k|dθ, x ∈ 
 ⊂ R2, (2.16)

where

W (k) =

⎧⎪⎨⎪⎩
ρ̂(k)−Ĝ1(k)

|k| = ρ̂(k)−(
ρ̂(0)+k·∇kρ̂(0)

)
e− 1

2 |k|2σ2

|k| , k �= 0,

0, k = 0,

k ∈R2. (2.17)

Note that the singularity of W (k)/|k| at the origin in (2.16) is removed by switching to polar coordinates in the Fourier 
space, and thus u2(x) can be evaluated by the algorithm in [29].

In practical computations, the parameter σ in (2.6) should be chosen appropriately such that the Gaussian e− 1
2 |k|2σ 2

and 
k · ∇kρ̂(0)e− 1

2 |k|2σ 2
in the Fourier space decay at the same rate or faster than ρ̂(k) when |k| is large. With this choice 

of σ , there is no need to enlarge the computational domain in the Fourier space for the evaluation of (2.16) via the NUFFT. 
On the other hand, there is no need to oversample the truncated Fourier domain due to the rapid decaying of the Gaussian 
e− 1

2 |k|2σ 2
in the Fourier space. Thus, setting the Gaussian to 2 · 10−16 at |k|∞ = P with P being the side-length of the 

bounded computational box B = {k | |k| ≤ P } in the Fourier space, we can choose σ = 6/P , a constant that is independent 
of the density function ρ .

For the convenience of the readers, we summarize the algorithm to evaluate the Poisson potential u(x) in 2D in Algo-
rithm 1.

Similarly, for the 1D case, i.e., ULap(x) = − 1
2 |x|, we introduce the auxiliary functions

G(x) = 1√
2π σ

e
− x2

2σ2 , G1(x) = ρ̂(0)G(x) − (̂xρ)(0) G ′(x), x ∈R, (2.18)

and function u1(x) which satisfies the 1D Poisson equation with the far-field condition

−u′′
1(x) = G1(x), x ∈R, lim

x→±∞

[
u1(x) + 1 (

ρ̂(0)|x| ∓ (̂xρ)(0)
)]

= 0. (2.19)

2
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Algorithm 1 Evaluation of the Poisson potential in 2D.

Compute ρ̂(k) and ̂(xρ)(0).

Evaluate u1(x) = ρ̂(0)u1,1(x) − (̂xρ)(0) · u1,2(x) via (2.12) and (2.13).
Evaluate u2(x) through (2.16) via the NUFFT [29].
Compute u(x) = u1(x) + u2(x).

Solving the above problem via the convolution, we have

u1(x) = (ULap ∗ G1)(x) = ρ̂(0) u1,1(x) − (̂xρ)(0)u1,2(x), x ∈ R, (2.20)

where

u1,1(x) = (ULap ∗ G)(x) = − σ√
2π

e
− x2

2σ2 − 1

2
x Erf

(
x√
2σ

)
, (2.21)

u1,2(x) = u′
1,1(x) = −1

2
Erf

(
x√
2σ

)
, x ∈R. (2.22)

Here, Erf(x) = 2√
π

∫ x
0 e−t2

dt for x ∈ R is the error function. Combining (2.1) and (2.19), we solve the remaining function 
u2(x) = u(x) − u1(x) via the Fourier integral:

u2(x) = (
ULap ∗ (ρ − G1)

)
(x) = 1

2π

∫
R

ρ̂(k) − Ĝ1(k)

k2
ei kxdk (2.23)

= 1

2π

∫
R

W (k)ei kxdk ≈ 1

2π

P∫
−P

W (k)ei kxdk, x ∈ 
 ⊂ R, (2.24)

where

W (k) =

⎧⎪⎨⎪⎩
ρ̂(k) − Ĝ1(k)

k2
= ρ̂(k)−(

ρ̂(0)+k(ρ̂)′(0)
)

e− 1
2 k2σ2

k2 , k �= 0,

− 1
2 (̂x2ρ)(0) + σ 2

2 ρ̂(0), k = 0,

k ∈R. (2.25)

Note that the integrand W (k) is smooth at the origin k = 0 in the Fourier space, therefore u2(x) can be computed by the 
regular FFT method. The choice of the parameter σ is similar as the one in the 2D case.

We remark that the 1D Poisson potential has also been dealt with successfully in [41] by plugging the Fourier spectral 
approximation of the density obtained on a finite interval into the convolution formula (1.2). The method proposed there is 
an alternative good choice.

2.3. Confined Coulomb interactions

When U (x) reads as (1.12), there is no equivalent PDE formulation for the nonlocal potential u(x). When d = 2, noticing 
that

Û ε
Con(k) ≈

⎧⎨⎩
1
|k| , |k| → 0,

√
2√

πε|k|2 , |k| → ∞,
k ∈R2, (2.26)

we can immediately adapt the NUFFT-based solver [29] as follows:

u(x) = 1

(2π)2

∫
R2

ei k·x Û ε
Con(k) ρ̂(k)dk ≈ 1

(2π)2

∫
|k|≤P

ei k·x Û ε
Con(k) ρ̂(k)dk

= 1

(2π)2

P∫
0

2π∫
0

ei k·x W1(k) ρ̂(k)d|k|dθ, x ∈ 
 ⊂ R2, (2.27)

where

W1(k) = |k| Û ε
Con(k) = 2

π

∞∫ |k|e− ε2s2
2

|k|2 + s2
ds =

⎧⎨⎩
2
π

∫ ∞
0

e−ε2 |k|2s2/2

1+s2 ds, k �= 0,

1, k = 0,

k ∈ R2. (2.28)
0
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The integral in (2.28) can be evaluated very accurately via the standard quadrature, such as the Gauss–Kronrod quadrature.
Similarly, when d = 1 we have

Û ε
Con(k) ≈

{ 1
2 [ln 2 − γe − 2 ln(ε|k|)] , |k| → 0,

1
ε2|k|2 , |k| → ∞,

k ∈R. (2.29)

Thus

u(x) = 1

2π

∫
R

ei kx Û ε
Con(k) ρ̂(k)dk = − 1

2π

∫
R

ei kxk
[
∂k

(
Û ε

Con(k) ρ̂(k)
) + ix Û ε

Con(k) ρ̂(k)
]

dk

= − 1

2π

∫
R

ei kx
[
k ∂kÛ ε

Con(k) ρ̂(k) − ik Û ε
Con(k) (̂xρ)(k) + ixk Û ε

Con(k) ρ̂(k)
]

dk

= 1

2π

∫
R

ei kx
[

W2(k) ρ̂(k) + i W3(k) (̂xρ)(k)
]

dk − i x

2π

∫
R

ei kx W3(k) ρ̂(k)dk

≈ 1

2π

P∫
−P

ei kx
[

W2(k)ρ̂(k) + i W3(k)(̂xρ)(k)
]

dk − i x

2π

P∫
−P

ei kx W3(k)ρ̂(k)dk, x ∈ [−L, L]. (2.30)

Here

W2(k) = −k ∂kÛ ε
Con(k) =

∞∫
0

k2e−ε2s/2

(k2 + s)2
ds =

⎧⎨⎩
∫ ∞

0
e−ε2k2s/2

(1+s)2 ds, k �= 0,

1, k = 0,

k ∈R, (2.31)

W3(k) = k Û ε
Con(k) =

∞∫
0

k e−ε2s/2

2(k2 + s)
ds =

⎧⎨⎩
∫ ∞

0
k e−ε2k2s/2

2(1+s) ds, k �= 0,

0, k = 0,

k ∈R. (2.32)

The integrals in (2.31)–(2.32) can be discretized very accurately via the standard quadrature, and the integrals in (2.30) can 
be evaluated via the regular FFT.

Remark 2.1. If ρ(x) is spherically/radially symmetric and U (x) reads as (1.9) in 3D/2D, then the corresponding nonlocal 
interaction u(x) in (2.1) is also spherically/radially symmetric. In addition, it satisfies the following second-order ODE

− 1

rd−1
∂r

(
rd−1∂ru(r)

)
= ρ(r), 0 < r < ∞, d = 3,2, (2.33)

∂ru(0) = 0, u(r) →
{

0, d = 3,

−C0 ln r, d = 2,
r → ∞, (2.34)

where r = |x| and C0 = ∫ ∞
0 ρ(r)r dr. Moreover, if ρ(r) has a compact support or decays exponentially fast when r → ∞, the 

above problem can be further re-formulated or approximated by [28,35]

− 1

rd−1
∂r

(
rd−1∂ru(r)

)
= ρ(r), 0 < r < L, d = 3,2, (2.35)

∂ru(0) = 0, ∂ru(L) =
⎧⎨⎩ − u(L)

L , d = 3,

u(L)
L ln L , d = 2,

(2.36)

where L > 0 is large enough such that supp(ρ) ⊂ [0, L] or the truncation error in ρ outside [0, L] is negligible. This two-
point boundary value problem can be solved by the finite difference (FDM) or finite element (FEM) or spectral method. 
Comparing to computing the original convolution or solving the corresponding Poisson equation in 3D/2D, the memory 
and/or computational cost are significantly reduced.

2.4. Numerical comparisons

In this subsection, we will demonstrate the efficiency and accuracy of the NUFFT based method for nonlocal interaction 
evaluation and compare it with other existing methods such as the FFT based algorithm [11], the DST based one [17,41]
and the finite difference method via (2.35)–(2.36) [35]. To this end, we denote 
 as the computational domain and choose 
hx = hy = hz = h in 3D or hx = hy = h in 2D unless stated otherwise. We denote 
h as the partition of 
 with mesh size h
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Table 1
Errors for the evaluation of the 3D Coulomb interaction by different methods for different h and L.

h = 2 h = 1 h = 1/2 h = 1/4 h = 1/8

NUFFT
L = 4 4.191E−01 2.696E−03 6.634E−07 4.599E−07 3.688E−07
L = 8 4.111E−01 2.817E−03 1.667E−08 2.367E−14 2.404E−14
L = 16 4.127E−01 2.848E−03 1.732E−08 1.420E−14 1.334E−14

DST
L = 4 2.437E−01 2.437E−01 2.437E−01 2.437E−01 2.437E−01
L = 8 2.754E−01 1.219E−01 1.219E−01 1.219E−01 1.219E−01
L = 16 3.433E−01 6.093E−02 6.093E−02 6.093E−02 6.093E−02
L = 32 3.780E−01 3.046E−02 3.046E−02 3.046E−02 3.046E−02
L = 64 3.956E−01 1.523E−02 1.523E−02 1.523E−02 1.523E−02

FFT
L = 4 3.032E−01 3.363E−01 3.385E−01 3.385E−01 3.385E−01
L = 8 1.744E−01 1.712E−01 1.720E−01 1.720E−01 1.720E−01
L = 16 2.958E−01 8.666E−02 8.632E−02 8.632E−02 8.632E−02
L = 32 3.550E−01 4.372E−02 4.320E−02 4.320E−02 4.320E−02
L = 64 3.843E−01 2.214E−02 2.161E−02 2.161E−02 2.161E−02

Fig. 2. Errors of δh(x) = |u(x, 0, 0) − uh(x, 0, 0)| for the evaluation of the Coulomb interaction in 3D via the NUFFT method with L = 8 for different mesh 
size h (left) and via the DST method with mesh size h = 1/4 for different L (right).

and uh(x) as the numerical solution obtained by a numerical method on 
h . To show the comparison, we adopt the error 
function

eh := ‖u − uh‖l∞

‖u‖l∞
= maxx∈
h |u(x) − uh(x)|

maxx∈
h |u(x)| . (2.37)

Example 2.1 (3D Coulomb interaction). Here d = 3 and U (x) = UCou(x), we take ρ(x) := e−(x2+y2+γ 2 z2)/δ2
with δ > 0 and 

γ ≥ 1. The 3D Coulomb interaction can be computed analytically as

u(x) =

⎧⎪⎪⎨⎪⎪⎩
δ3√

π
4 |x| Erf

( |x|
δ

)
, γ = 1,

δ2

4γ

∫ ∞
0

e
− x2+y2

δ2(t+1) e
− z2

δ2(t+γ −2)

(t+1)
√

t+γ −2
dt, γ �= 1,

x ∈R3. (2.38)

The 3D Coulomb interaction u(x) is computed numerically via the NUFFT, DST and FFT methods on a bounded compu-
tational domain 
 = [−L, L]2 × [−L/γ , L/γ ] with mesh size h. Table 1 shows the errors eh via the NUFFT, DST and FFT 
methods with γ = 1, δ = 1.1 for different mesh size h and L. Fig. 2 depicts the error of the Coulomb interaction along the 
x-axis, which is defined as δh(x) := |u(x, 0, 0) − uh(x, 0, 0)|, obtained via the NUFFT and DST methods with γ = 1, δ = 1.1
for different mesh size h and L. In addition, Table 2 shows the errors eh via the NUFFT, DST and FFT methods with δ = 2
and L = 8, h = 1/4 for different γ . Here h denote hx = hy and we choose hz = h/γ .

From Tables 1–2 and Fig. 2, we can observe clearly that: (i) The errors are saturated in the DST and FFT methods as 
mesh size h tends smaller and the saturated accuracies decrease linearly with respect to the box size L; (ii) The NUFFT 
method is spectrally accurate and it essentially does not depend on the domain, which implies that a very large bounded 
computational domain is not necessary in practical computations when the NUFFT method is used; (iii) The NUFFT is 
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Table 2
Errors for the evaluation of the 3D Coulomb interaction by different methods with δ = 2 and L = 8, h = 1/4 for different γ .

γ = 1 γ = 2 γ = 4 γ = 8

NUFFT 2.164E−14 2.134E−14 2.044E−14 2.005E−14
DST 0.146 0.441 1.559 3.782
FFT 0.208 0.310 1.327 3.349

Table 3
Errors for the evaluation of the 2D Coulomb interaction by different methods for different h and L.

h = 2 h = 1 h = 1/2 h = 1/4 h = 1/8

NUFFT
L = 4 1.837 5.540E−02 4.289E−07 3.383E−07 2.937E−07
L = 8 4.457E−01 2.373E−03 2.714E−08 3.202E−15 3.431E−15
L = 16 2.084E−01 2.385E−03 2.761E−08 2.745E−15 2.859E−15

DST
L = 4 1.577E−01 1.577E−01 1.577E−01 1.577E−01 1.577E−01
L = 8 1.348E−01 7.762E−02 7.762E−02 7.762E−02 7.762E−02
L = 16 1.711E−01 3.867E−02 3.867E−02 3.867E−02 3.867E−02
L = 32 1.897E−01 1.932E−02 1.932E−02 1.932E−02 1.932E−02
L = 64 1.991E−01 9.658E−03 9.658E−03 9.658E−03 9.658E−03

FFT
L = 4 2.855E−01 2.961E−01 2.980E−01 2.980E−01 2.980E−01
L = 8 1.553E−01 1.503E−01 1.502E−01 1.502E−01 1.502E−01
L = 16 1.157E−01 7.596E−02 7.528E−02 7.528E−02 7.528E−02
L = 32 1.624E−01 3.843E−02 3.766E−02 3.766E−02 3.766E−02
L = 64 1.856E−01 1.961E−02 1.883E−02 1.883E−02 1.883E−02

Table 4
Errors for the evaluation of the 2D Coulomb interaction by different methods with L = 12, h = 1/8 for different γ .

γ = 1 γ = 2 γ = 4 γ = 8

NUFFT 4.230E−14 3.102E−15 3.504E−15 4.381E−15
DST 0.373 0.386 0.412 0.446
FFT 0.426 0.425 0.405 0.344

capable of dealing with anisotropic densities, which is quite useful in numerical simulation of BEC with strong confinement, 
while the errors by the DST and FFT methods increase dramatically with strongly anisotropic densities (cf. Table 2).

Example 2.2 (2D Coulomb interaction). Here d = 2 and U (x) = UCou(x), we take ρ(x) := e−(x2+γ 2 y2)/δ2
with δ > 0 and γ ≥ 1. 

The 2D Coulomb interaction can be obtained analytically as

u(x) =

⎧⎪⎪⎨⎪⎪⎩
√

π δ
2 I0

( |x|2
2δ2

)
e
− |x|2

2δ2 , γ = 1,

δ

γ
√

π

∫ ∞
0

e
− x2

δ2(t2+1) e
− y2

δ2(t2+γ −2)√
t2+1

√
t2+γ −2

dt, γ �= 1,

x ∈ R2, (2.39)

where I0 is the modified Bessel function of order zero [1]. To numerically compute the integral in (2.39), we first split 
it into two integrals and reformulate the one with infinite interval into some equivalent integral with finite interval by a 
simple change of variable. We then apply the Gauss–Kronrod quadrature to each with fine accuracy control so as to achieve 
accurate reference solutions.

The 2D Coulomb interaction u(x) is computed numerically via the NUFFT, DST and FFT methods on a bounded com-
putational domain 
 = [−L, L] × [−L/γ , L/γ ] with mesh size h. Table 3 shows the errors eh via the NUFFT, DST and FFT 
methods with δ = √

1.2 and γ = 1 under different mesh size h and L. In addition, Table 4 shows the errors eh via the 
NUFFT, DST and FFT methods with δ = 2, L = 12 and h = 1/8 for different γ . Here h denote hx and we choose hy = h/γ .

From Tables 3–4, we can conclude that: (i) The errors obtained by the DST and FFT methods reach a saturation accuracy 
on any fixed domain and we can observe a first order convergence in the saturated accuracy with respect to the domain 
size L. (ii) The NUFFT method is spectrally accurate and it essentially does not depend on the domain which makes it 
perfect for computing the whole space potential. (iii) The NUFFT is capable of dealing with anisotropic densities, while the 
results obtained by the DST and FFT methods are far from the exact solutions when the bounded computational domain is 
not large enough.
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Table 5
Errors for the evaluation of the 2D Poisson potential by different methods for different h and L.

NUFFT h = 2 h = 1 h = 1/2 h = 1/4 h = 1/8

L = 4 5.821E−01 1.133E−02 3.011E−06 1.994E−06 1.650E−06
L = 8 1.685E−01 6.820E−04 1.754E−09 4.936E−14 4.857E−14
L = 16 1.684E−01 5.333E−04 1.391E−09 4.577E−14 4.561E−14

FDM h = 1/4 h = 1/8 h = 1/16 h = 1/32 h = 1/64

L = 4 4.646E−03 1.155E−03 2.910E−04 7.602E−05 2.246E−05
Rate – 2.0081 1.9889 1.9365 1.7590
L = 8 4.101E−03 1.019E−03 2.542E−04 6.353E−05 1.588E−05
Rate – 2.0093 2.0024 2.0006 2.0002
L = 16 4.052E−03 1.007E−03 2.512E−04 6.278E−05 1.569E−05
Rate – 2.0092 2.0023 2.0006 2.0001

Table 6
CPU time (in seconds) of the NUFFT solver for the evaluation of the 2D Poisson potential. Here TFFT and TNUFFT

are the time for the evaluation of I1 and I2 in (2.3) via the FFT and NUFFT methods, respectively.

TFFT TNUFFT TTotal

h = 1 0.01 0.05 0.06
h = 1/2 0.02 0.08 0.10
h = 1/4 0.12 0.20 0.32
h = 1/8 0.60 0.78 1.38

Example 2.3 (2D Poisson potential). Here d = 2 and U (x) = ULap(x), we take ρ(x) := e−|x|2/δ2 = e−r2/δ2
with r = |x| and δ > 0. 

The 2D Poisson potential can be obtained analytically as

u(x) = −δ2

4

[
E1

( |x|2
δ2

)
+ 2 ln(|x|)

]
, x ∈R2. (2.40)

In this case, we choose δ = √
1.3. The 2D Poisson potential u(x) is computed numerically via the NUFFT method on a 

bounded computational domain 
 = [−L, L]2 with mesh size h and the FDM through the formulation (2.35)–(2.36) on the 
interval [0, L] with mesh size h.

Table 5 shows the errors of the 2D Poisson potential obtained by the NUFFT solver on a square domain and the errors by 
the FDM solver as well as its convergence rate with respect to the mesh size h. In addition, to demonstrate the efficiency 
of the NUFFT method, Table 6 displays the computational time (CPU time in seconds) of the NUFFT solver with L = 16 and 
h = 1/4, where the time is measured when the algorithm is implemented in Fortran, the code is compiled by ifort 13.1.2 
using the option -g, and executed on 32-bit Ubuntu Linux on a 2.90 GHz Intel(R) Core(TM) i7-3520M CPU with 6 MB cache.

From Tables 5–6, we can see clearly that: (i) The NUFFT solver is spectrally accurate while the FDM solver is only second 
order accurate, and the NUFFT solver is much more accurate than the FDM solver. (ii) The errors obtained by both methods 
do not essentially depend on the domain size; (iii) The complexity of the NUFFT solver scales like O (N ln N) as expected, 
which is the same as those presented in [29].

3. Computing the ground state

In this section, we present an efficient and accurate numerical method for computing the ground state of (1.13) by com-
bining NUFFT-based nonlocal interaction potential solver and the normalized gradient flow that is discretized by backward 
Euler Fourier pseudospectral method, and compare it with those existing numerical methods.

3.1. A numerical method via the NUFFT

We choose τ > 0 as the time step and denote tn = nτ for n = 0, 1, 2, . . . . Different efficient and accurate numerical 
methods have been proposed in the literature for computing the ground state [3,6–8,21,41]. One of the most simple and 
popular methods is through the following gradient flow with discretized normalization (GFDN):

∂tφ(x, t) =
[

1

2
� − V (x) − β ϕ(x, t)

]
φ(x, t), x ∈Rd, tn ≤ t < tn+1, (3.1)

ϕ(x, t) =
(

U ∗ |φ|2
)

(x, t), x ∈Rd, tn ≤ t < tn+1, (3.2)

φ(x, tn+1) := φ(x, t+
n+1) = φ(x, t−

n+1)

‖φ(x, t− )‖ , x ∈Rd, n = 0,1,2, . . . (3.3)

n+1
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with the initial data

φ(x,0) = φ0(x), x ∈Rd, with ‖φ0‖2 :=
∫
Rd

|φ0(x)|2 dx = 1. (3.4)

Let φn(x) and ϕn(x) be the numerical approximation of φ(x, tn) and ϕ(x, tn), respectively, for n ≥ 0. The above GFDN is 
usually discretized in time via the backward Euler method [6–8,21,41]

φ(1)(x) − φn(x)

τ
=

[
1

2
� − V (x) − β ϕn(x)

]
φ(1)(x), x ∈ Rd, (3.5)

ϕn(x) =
(

U ∗ |φn|2
)

(x), x ∈Rd, (3.6)

φn+1(x) = φ(1)(x)

‖φ(1)(x)‖ , x ∈Rd, n = 0,1,2, . . . . (3.7)

Then an efficient and accurate numerical method can be designed by: (i) truncating the above problem on a bounded 
computational domain 
 with periodic BC on ∂
; (ii) discretizing in space via the Fourier pseudospectral method; and 
(iii) evaluating the nonlocal interaction ϕn(x) in (3.6) by the algorithm via the NUFFT discussed in the previous section. 
When φ0(x) is chosen as a positive function, the ground state can be obtained as φg(x) = limn→∞ φn(x) for x ∈ 
. The de-

tails are omitted here for brevity and this method is referred to as the GF-NUFFT method. We remark here that |̂φn|2(0) = 1
for n ≥ 0.

For comparison, for the Coulomb interaction in 3D/2D, when the NUFFT solver is replaced by the standard FFT, we refer 
to the method as GF-FFT. In addition, when (3.6) is reformulated as its equivalent PDE formulation (1.7)–(1.8) on 
 with 
homogeneous Dirichlet BC on ∂
 and solved via the sine pseudospectral method [6,9,41], we refer to it as GF-DST.

3.2. Numerical comparisons

In order to compare the GF-NUFFT method with GF-FFT and GF-DST methods for computing the ground state, we denote 
ϕg(x) = (U ∗ |φg |2)(x) and introduce the errors

eh
φg

:= maxx∈
h |φg(x) − φh
g(x)|

maxx∈
h |φg(x)| , eh
ϕg

:= maxx∈
h |ϕg(x) − ϕh
g(x)|

maxx∈
h |ϕg(x)| ,

where φh
g and ϕh

g are obtained numerically by a numerical method with mesh size h. Additionally, we split the energy 
functional into three parts

E(φ) = Ekin(φ) + Epot(φ) + E int(φ),

where the kinetic energy Ekin(φ), the potential energy Epot(φ) and the interaction energy E int(φ) are defined as

Ekin(φ) = 1

2

∫
Rd

|∇φ(x)|2dx, Epot(φ) =
∫
Rd

V (x)|φ(x)|2dx, E int(φ) = β

2

∫
Rd

ϕ(x)|φ(x)|2dx,

respectively. Moreover, the chemical potential can be reformulated as μ(φ) = E(φ) + E int(φ). Furthermore, if the external 
potential V (x) in (1.1) was taken as the harmonic potential [4,9,35], the energies of the ground state satisfy the following 
virial identity

0 = I := 2Ekin(φg) − 2Epot(φg) +
{

E int(φg), U = UCou in 3D/2D,

β
4π , U = ULap in 2D.

We denote Ih as an approximation of I when φg is replaced by φh
g in the above equality. In our computations, the ground 

state φh
g is reached numerically when maxx∈
h

|φn+1(x)−φn(x)|
τ ≤ ε0 with ε0 a prescribed accuracy, e.g., ε0 = 10−10. The initial 

data φ0(x) is chosen as a Gaussian and the time step is taken as τ = 10−2. In the comparisons, the reference solution φg(x)

was obtained numerically via the GF-NUFFT method on a large enough domain 
 = [−8, 8]d with small enough mesh size 
h = 2d−6 and time step τ = 10−2.

Example 3.1 (The NLSE with the Coulomb interaction in 3D). We take d = 3 and U (x) = UCou(x) in (1.1)–(1.2). The ground state is 
computed numerically on a bounded domain 
 = [−8, 8]3. Table 7 shows the errors eh

φg
and eh

ϕg
with V (x) = 1

2 (x2 + y2 + z2)

in (1.1) for different numerical methods, β and mesh size h. In addition, Table 8 lists the energy E g := E(φh
g), chemical 

potential μg := μ(φh
g), kinetic energy E g

kin := Ekin(φh
g), potential energy E g

pot := Epot(φ
h
g), interaction energy E g

int := E int(φ
h
g)

and Ih with h = 1/8 and V (x) = 1 (x2 + y2 + 4z2) in (1.1) for different β .
2
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Table 7
Errors of the ground state for the NLSE with the 3D Coulomb interaction for different methods and mesh size h.

h = 2 h = 1 h = 1/2 h = 1/4

GF-NUFFT
eh
φg

β = −5 5.362E−02 1.954E−04 2.201E−07 4.643E−11
β = 5 1.512E−01 4.712E−04 4.026E−08 1.141E−10

eh
ϕg

β = −5 2.532E−01 3.769E−03 8.153E−07 7.035E−11
β = 5 2.682E−01 7.061E−04 1.225E−07 8.048E−11

GF-DST
eh
φg

β = −5 2.319E−01 9.439E−03 1.637E−06 6.309E−07
β = 5 1.659E−01 9.469E−04 8.306E−07 8.531E−07

eh
ϕg

β = −5 7.297E−02 9.551E−02 9.945E−02 1.027E−01
β = 5 7.809E−02 1.016E−01 1.057E−01 1.091E−01

Table 8
Different energies of the ground state and Ih for the NLSE with the 3D Coulomb interaction for different β .

β E g μg E g
kin E g

pot E g
int Ih

−10 1.6370 1.2630 1.0990 9.1197E−01 −3.7401E−01 −3.39E−10
−5 1.8212 1.6397 1.0467 9.5594E−01 −1.8147E−01 −3.63E−10
−1 1.9646 1.9292 1.0089 9.9118E−01 −3.5462E−02 −3.87E−10

1 2.0351 2.0702 9.9128E−01 1.0088 3.5064E−02 −3.86E−10
5 2.1739 2.3454 9.5831E−01 1.0441 1.7151E−01 −4.30E−10

10 2.3431 2.6772 9.2101E−01 1.0880 3.3408E−01 −1.16E−10

Table 9
Errors of the ground state for the NLSE with 2D Coulomb interaction on [−L, L]2 with mesh size h.

GF-NUFFT (L = 8) h = 1 h = 1/2 h = 1/4 h = 1/8

eh
φg

β = −5 4.620E−02 1.058E−03 5.570E−08 3.968E−15
β = 5 7.034E−03 2.365E−05 2.632E−10 2.074E−15

eh
ϕg

β = −5 1.025E−01 1.402E−03 8.244E−08 4.445E−15
β = 5 1.263E−02 3.239E−05 3.161E−10 1.703E−15

GF-DST (L = 8) h = 1 h = 1/2 h = 1/4 h = 1/8

eh
φg

β = −5 4.823E−02 1.112E−03 3.139E−05 3.133E−05
β = 5 8.183E−03 7.245E−05 5.317E−05 5.381E−05

eh
ϕg

β = −5 6.613E−02 5.159E−02 5.159E−02 5.159E−02
β = 5 6.840E−02 6.840E−02 6.840E−02 6.840E−02

GF-DST (h = 1/8) L = 8 L = 16 L = 32 L = 64

eh
φg

β = −5 3.133E−05 3.848E−06 4.789E−07 5.980E−08
β = 5 5.381E−05 6.212E−06 7.606E−07 9.445E−08

eh
ϕg

β = −5 5.159E−02 2.572E−02 1.072E−02 5.248E−03
β = 5 6.840E−02 3.398E−02 1.415E−02 6.928E−03

Example 3.2 (The NLSE with the Coulomb interaction in 2D). We take d = 2 and U (x) = UCou(x) in (1.1)–(1.2). The ground state 
is computed numerically on a bounded domain 
 = [−L, L]2 with different mesh size h. Table 9 shows the errors eh

φg
and 

eh
ϕg

with V (x) = 1
2 (x2 + 4y2) for different numerical methods, β and mesh size h on [−L, L]2. In addition, Table 10 lists 

the energy E g := E(φh
g), chemical potential μg := μ(φh

g), kinetic energy E g
kin := Ekin(φh

g), potential energy E g
pot := Epot(φ

h
g), 

interaction energy E g
int := E int(φ

h
g) and Ih with h = 1/8 and V (x) = 1

2 (x2 + 4y2) on [−8, 8]2 for different β .

Example 3.3 (The NLSE with the Poisson potential in 2D). We take d = 2 and U (x) = ULap(x) in (1.1)–(1.2). The ground state 
is computed numerically on a bounded domain 
 = [−8, 8]2 with different mesh size h. Table 11 shows the errors eh

φg

and eh
ϕg

with V (x) = 1
2 (x2 + 4y2) in (1.1) for different numerical methods, β and mesh size h. In addition, Table 12 lists 

the energy E g := E(φh
g), chemical potential μg := μ(φh

g), kinetic energy E g
kin := Ekin(φh

g), potential energy E g
pot := Epot(φ

h
g), 

interaction energy E g := E int(φ
h
g) and Ih with h = 1/8 and V (x) = 1 (x2 + 4y2) in (1.1) for different β .
int 2
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Table 10
Different energies of the ground state and Ih for the NLSE with the 2D Coulomb interaction for different β .

β E g μg E g
kin E g

pot E g
int Ih

−10 0.1367 −1.4536 1.2611 4.6592E−01 −1.5903 1.89E−10
−5 0.8698 0.1933 9.4226E−01 6.0401E−01 −6.7651E−01 2.37E−10
−1 1.3808 1.2600 7.8098E−01 7.2058E−01 −1.2080E−01 2.60E−10

1 1.6163 1.7311 7.2201E−01 7.7942E−01 1.1483E−01 −2.61E−10
5 2.0551 2.5801 6.3379E−01 8.9629E−01 5.2501E−01 −2.65E−10

10 2.5557 3.5132 5.5977E−01 1.0385 9.5748E−01 −2.69E−10

Table 11
Errors of the ground state for the NLSE with the 2D Poisson potential with mesh size h.

GF-NUFFT h = 1 h = 1/2 h = 1/4 h = 1/8

eh
φg

β = −5 2.465E−02 1.024E−04 4.699E−10 2.878E−15
β = 5 1.191E−02 1.593E−05 9.793E−12 2.726E−15

eh
ϕg

β = −5 3.737E−02 7.634E−05 2.896E−10 6.347E−14
β = 5 1.033E−02 3.282E−06 2.682E−12 6.247E−14

Table 12
Different energies of the ground state and Ih for the NLSE with the 2D Poisson potential for different β .

β E g μg E g
kin E g

pot E g
int Ih

−10 1.3533 1.1432 9.8061E−01 5.8272E−01 −2.1008E−01 2.44E−10
−5 1.4429 1.3691 8.5784E−01 6.5889E−01 −7.3819E−02 2.54E−10
−1 1.4913 1.4819 7.7024E−01 7.3045E−01 −9.3826E−03 2.59E−10

1 1.5073 1.5139 7.3046E−01 7.7025E−01 6.5762E−03 −2.62E−10
5 1.5221 1.5260 6.5959E−01 8.5854E−01 3.9516E−03 −2.70E−10

10 1.5076 1.4420 5.8770E−01 9.8559E−01 −6.5660E−02 −2.81E−10

From Tables 7–12 and additional numerical results not shown here for brevity, we can see that: (i) The GF-NUFFT method 
is spectrally accurate in space, while the GF-DST method has a saturation accuracy for a fixed domain; (ii) The saturation 
error of the GF-DST depends inversely on the domain size L, and it can only reach satisfactory accuracy for some large L; 
(iii) High accuracy, i.e., 9-digit accurate, is achieved by GF-NUFFT as quite expected in the energies, which, in another way, 
manifest the high-accuracy advantage of our NUFFT solver.

4. For computing the dynamics

In this section, we present an efficient and accurate numerical method for computing the dynamics of the NLSE with 
the nonlocal interaction potential (1.1)–(1.2) and the initial data (1.3) by combining the NUFFT solver for the nonlocal 
interaction potential evaluation and the time-splitting Fourier pseudospectral discretization, and compare it with those 
existing numerical methods [2,10,30,31,37,39].

4.1. A numerical method via the NUFFT

From time t = tn to t = tn+1, the NLSE (1.1) will be solved in two splitting steps. One solves first

i ∂tψ(x, t) = −1

2
�ψ(x, t), x ∈Rd, tn ≤ t ≤ tn+1, (4.1)

for the time step of length τ , followed by solving

i ∂tψ(x, t) = [V (x) + β ϕ(x, t)]ψ(x, t), ϕ(x, t) =
(

U ∗ |ψ |2
)

(x, t), x ∈Rd, tn ≤ t ≤ tn+1, (4.2)

for the same time step. For t ∈ [tn, tn+1], Eq. (4.2) leaves |ψ | invariant in t [5,9], i.e., |ψ(x, t)| = |ψ(x, tn)|, and thus ϕ is time 
invariant, i.e., ϕ(x, t) = ϕ(x, tn) := ϕn(x), therefore it becomes

i ∂tψ(x, t) = [
V (x) + β ϕn(x)

]
ψ(x, t), ϕn(x) =

(
U ∗ |ψn|2

)
(x), x ∈Rd, tn ≤ t ≤ tn+1, (4.3)

where ψn(x) := ψ(x, tn), which immediately implies that

ψ(x, t) = e−i
[
V (x)+β ϕn(x)

]
(t−tn)ψ(x, tn), x ∈ Rd, tn ≤ t ≤ tn+1. (4.4)

Then an efficient and accurate numerical method can be designed by: (i) adopting a second-order Strang splitting [38] or 
a fourth-order time splitting method [40] to decouple the nonlinearity; (ii) truncating the problem on a bounded compu-
tational domain 
, and imposing the periodic BC on ∂
 for the subproblem (4.1); (iii) discretizing (4.1) in space by the 
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Table 13
Errors of the wave-function and the nonlocal interaction at t = 1/8 for the NLSE with the 3D Coulomb interaction.

h = 1 h = 1/2 h = 1/4 h = 1/8

TS-NUFFT
eh
ψ (1/8) β = −5 5.461E−03 1.011E−05 9.297E−12 1.492E−13

β = 5 3.997E−03 7.879E−06 6.959E−12 1.348E−13

eh
ϕ(1/8) β = −5 7.890E−03 4.466E−06 4.745E−12 6.992E−14

β = 5 6.563E−03 2.828E−06 1.081E−12 6.872E−14

TS-DST
eh
ψ (1/8) β = −5 2.561E−02 3.024E−02 3.025E−02 3.025E−02

β = 5 2.753E−02 3.024E−02 3.025E−02 3.025E−02

eh
ρ(1/8) β = −5 5.567E−03 1.444E−05 2.397E−07 2.441E−07

β = 5 5.590E−03 1.416E−05 2.560E−07 2.568E−07

eh
ϕ(1/8) β = −5 1.099E−01 1.099E−01 1.099E−01 1.099E−01

β = 5 1.117E−01 1.117E−01 1.117E−01 1.117E−01

Fourier spectral method and integrating in time exactly; (iv) evaluating the nonlocal interaction ϕn(x) in (4.4) by the algo-
rithm via the NUFFT discussed in previous sections, and integrating in time exactly for (4.4). The details are omitted here 
for brevity and this method is referred to as the TS-NUFFT method.

For comparison, for the nonlocal interaction in 3D/2D, when the NUFFT in the above method is replaced by the stan-
dard FFT, we refer to the method as TS-FFT. In addition, when the nonlocal interaction ϕn(x) in (4.4) is reformulated as its 
equivalent PDE formulation (1.7)–(1.8) on 
 with homogeneous Dirichlet BC on ∂
 and then discretized by the sine pseu-
dospectral method with an evaluation of (4.1) via the sine spectral method and integrated in time exactly [6,41], we refer 
to it as TS-DST.

4.2. Numerical comparisons

Again, in order to compare the TS-NUFFT method with the GF-DST method for computing the dynamics, we denote 
ρ(x, t) = |ψ(x, t)|2 and ϕ(x, t) = (U ∗ |ψ |2)(x, t) and introduce the errors

eh
ψ(t) := maxx∈
h |ψ(x, t) − ψn

h (x)|
maxx∈
h |ψ(x, t)| , eh

ϕ(t) := maxx∈
h |ϕ(x, t) − ϕn
h (x)|

maxx∈
h |ϕ(x, t)| ,

eh
ρ(t) := maxx∈
h |ρ(x, t) − ρn

h (x)|
maxx∈
h |ρ(x, t)| , t = tn, n ≥ 0,

where ψn
h (x), ϕn

h (x) and ρn
h (x) are obtained numerically by a numerical method as the approximations of ψ(x, t), ϕ(x, t)

and ρ(x, t) at t = tn , respectively with a given mesh size h and a very small time step τ > 0. The external potential in (1.1)
and the initial data in (1.3) are chosen as

V (x) = |x|2
2

, ψ(x,0) = ψ0(x) = e− |x|2
2 , x ∈Rd with d = 3 or 2. (4.5)

In the comparisons, the “exact” solution ψ(x, t) (and thus ϕ(x, t) and ρ(x, t)) was obtained numerically via the TS-NUFFT
method on a large enough domain 
 with very small enough mesh size h and time step τ . In our computations, we use 
the fourth-order time-splitting method for time integration [40].

Example 4.1 (The NLSE with the 3D Coulomb interaction). Here d = 3 and U (x) = UCou(x) in (1.1)–(1.2). The problem is solved 
numerically on a bounded computational domain 
 = [−8, 8]3 with time step τ = 10−3 and different mesh size h. Table 13
lists the errors of the wave-function, the density and the 3D Coulomb interaction at t = 1/8 obtained by the TS-NUFFT and 
TS-DST methods for different mesh size h and interaction constant β .

Example 4.2 (The NLSE with the 2D Coulomb interaction). Here d = 2 and U (x) = UCou(x) in (1.1)–(1.2). The problem is solved 
numerically on a bounded computational domain 
 = [−16, 16]2 with time step τ = 10−4 and different mesh size h. 
Table 14 shows the errors of the wave-function and the 2D Coulomb interaction at t = 0.5 obtained by the TS-NUFFT and 
TS-DST methods for different mesh size h and interaction constant β .

Example 4.3 (The NLSE with the 2D Poisson potential). Here d = 2 and U (x) = ULap(x) in (1.1)–(1.2). Again, the problem is 
solved numerically on a bounded computational domain 
 = [−16, 16]2 with time step τ = 10−4 and different mesh size h. 
Table 14 shows the errors of the wave-function and the 2D Coulomb interaction at t = 0.5 obtained by the TS-NUFFT
method for different mesh size h and interaction constant β . We remark here that the TS-DST method is not applicable for 
this case [35,41], therefore here we only present the results for the TS-NUFFT method.
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Table 14
Errors of the wave-function and the nonlocal interaction at t = 0.5 for the NLSE with the 2D Coulomb interaction.

TS-NUFFT (L = 16) h = 1 h = 1/2 h = 1/4 h = 1/8

eh
ψ (0.5) β = −5 1.582E−01 7.468E−03 4.746E−06 2.954E−12

β = 5 5.118E−02 7.756E−04 2.476E−10 1.268E−12

eh
ϕ(0.5) β = −5 2.219E−02 4.242E−03 4.169E−06 3.756E−12

β = 5 3.235E−02 2.451E−04 3.117E−11 7.586E−13

TS-DST (L = 16) h = 1 h = 1/2 h = 1/4 h = 1/8

eh
ψ (0.5) β = −5 1.175E−01 5.576E−02 6.311E−02 6.312E−02

β = 5 6.477E−02 6.308E−02 6.313E−02 6.313E−02

eh
ϕ(0.5) β = −5 4.286E−02 2.449E−02 2.449E−02 2.449E−02

β = 5 6.854E−02 4.412E−02 4.455E−02 4.478E−02

TS-DST (h = 1/8) L = 8 L = 16 L = 32 L = 64

eh
ψ (0.5) β = −5 1.263E−01 6.312E−02 3.156E−02 1.578E−02

β = 5 1.264E−01 6.313E−02 3.156E−02 1.578E−02

eh
ϕ(0.5) β = −5 4.907E−02 2.449E−02 1.021E−02 4.999E−03

β = 5 9.038E−02 4.500E−02 1.875E−02 9.181E−03

Table 15
Errors of the wave-function and the Poisson potential at t = 0.5 for the NLSE with the 2D Poisson potential.

TS-NUFFT h = 1 h = 1/2 h = 1/4 h = 1/8

eh
ψ (0.5) β = −5 5.833E−02 2.599E−04 3.211E−09 7.524E−13

β = 5 2.658E−02 9.083E−05 3.395E−12 1.124E−12

eh
ϕ(0.5) β = −5 1.329E−02 8.840E−05 1.072E−09 3.974E−13

β = 5 4.645E−03 2.805E−06 8.322E−13 5.821E−13

From Tables 13–15 and additional numerical results not shown here for brevity, we can draw the following conclusions: 
(i) The TS-DST, if applicable, cannot resolve the wave-function or the potential very accurately, while the TS-NUFFT achieves 
the spectral accuracy; (ii) The saturated accuracy by TS-DST decreases as the computation domain increases; (iii) As long as 
for the physical observables, e.g., the density ρ , are concerned, the TS-DST method can still capture reasonable accuracy (cf. 
Table 13).

4.3. Applications

To further demonstrate the efficiency and accuracy of the numerical method via the NUFFT, we simulate the long-time 
dynamics of the 2D NLSE with the Coulomb interaction, i.e., d = 2 and U (x) = UCou(x) and β = 5 in (1.1)–(1.2), and a 
honeycomb external potential [9,20] defined as

V (x) = 10 [cos(b1 · x) + cos(b2 · x) + cos((b1 + b2) · x)] , x = (x, y)T ∈R2, (4.6)

with b1 = π
4 (

√
3, 1)T and b2 = π

4 (−√
3, 1)T . This example can be formally used to describe the dynamics of the electrons 

in a graphene. The initial data in (1.3) is taken as ψ0(x, y) = e−(x2+y2)/2 for x ∈ R2 and the problem is solved numerically 
on 
 = [−32, 32]2 by using the TS-NUFFT with mesh size h = 1

16 and time step τ = 10−4. Fig. 3 shows the contour plots of 
the density ρ(x, y, t) at different times.

5. Conclusion

An efficient and accurate numerical method via the NUFFT was proposed for the fast evaluation of different nonlocal 
interactions including the Coulomb interactions in 3D/2D and the interaction kernel taken as either the Green’s function of 
the Laplace operator in 3D/2D/1D or nonlocal interaction kernels in 2D/1D obtained from the 3D Schrödinger–Poisson sys-
tem under strongly external confining potentials via dimension reduction. The method was compared extensively with those 
existing numerical methods and it was demonstrated that it can achieve much more accurate numerical results, especially 
on a smaller computational domain and/or with anisotropic interaction density. Also, efficient and accurate numerical meth-
ods were presented for computing the ground state and dynamics of the NLSE with nonlocal interactions. These methods 
combine the NUFFT based method for interaction evaluation with the normalized gradient flow method for ground state 
computation and/or time-splitting Fourier pseudospectral method for dynamics simulation, respectively. Extensive numerical 
comparisons with other existing methods were then carried out. Numerical results showed clearly that the NUFFT based 
methods outperform those existing methods in terms of accuracy and efficiency, especially when the computational domain 
is chosen smaller and/or the solution is anisotropic.
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Fig. 3. Contour plots of the density ρ(x, y, t) of the NLSE with the Coulomb interaction and a honeycomb potential in 2D at different times.
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