
East Asian Journal on Applied Mathematics Vol. 8, No. 3, pp. 598-610

doi: 10.4208/eajam.300418.300618 August 2018

The Numerical Study of the Ground States

of Spin-1 Bose-Einstein Condensates with

Spin-Orbit-Coupling

Yongjun Yuan1, Zhiguo Xu2, Qinglin Tang3 and Hanquan Wang4,∗

1Key Laboratory of HPC&SIP (MOE of China) and College of Mathematics and

Statistics, Hunan Normal University, Changsha, Hunan 410081, P.R. China.
2College of Mathematics, Jilin University, Changchun, Jilin 130012, P.R. China.
3School of Mathematics, Sichuan University, Chengdu 610065, P.R. China.
4School of Statistics and Mathematics, Yunnan University of Finance and

Economics, Kunming, Yunnan 650221, P.R. China.

Received 30 April 2018; Accepted (in revised version) 30 June 2018.

Abstract. A projection gradient method for computing the ground state of the spin-

orbit-coupled spin-1 Bose-Einstein condensate at extremely low temperatures is pro-

posed. The continuous gradient flows are discretised by a second-order finite difference

method in space and the Crank-Nicolson method in time. Our discretisation preserves

the total mass conservation and the energy diminishing property. Numerical results show

the efficiency of the method.
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1. Introduction

Bose-Einstein condensate (BEC) is a state of matter of the dilute boson gas cooled close

to absolute zero temperature. In these conditions, a large fraction of bosons occupy the

lowest quantum state [26]. It was first observed in experiments in 1995 and became an

ideal test ground for the experimental study of condensed matter phenomena. In particular,

since the spin-orbit coupling (SOC) is ubiquitous in nature, the realisation of spin-orbit

interaction in cold atomic gases is a hot topic nowadays [1, 9, 38, 39, 49]. Thus the spin-

orbit coupling has been successfully induced in recent experiments in a neutral atomic

Bose-Einstein condensates by dressing two atomic spin states with a pair of lasers [21–23].

These experiments triggered a strong activity in the area of spin-orbit-coupled cold atoms
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and a number of exciting phenomena have been discovered [13,47]. The spin-1 BECs with

isotropic spin-orbit coupling and rotation have been also studied — cf. Refs. [14,19,48]. It

was found that SOC plays a crucial role in majorana fermions [45], spintronic devices [18],

spin Hall effect [15] and topological insulators [10,27].

On the other hand, the creation of SOC in ultracold atomic gases attracted theoretical

attention — cf. Refs. [6, 8, 11, 12, 21, 23, 29, 32, 35, 38, 47, 50]. In particular, BEC with

various types of spin-orbit interaction has been considered in Refs. [20,24,34] and the spin-

orbit-coupled BEC with distinct internal structures of bosons in Refs. [16, 17, 34, 36, 37].

Nevertheless, it is worth noting that although different couplings can generate non-trivial

ground-state structures in spin-1/2, spin-1 and spin-2 BEC [4, 27, 33, 44, 46], there is no

efficient numerical method to find such ground state solutions.

The projection gradient method (PGM), first used in nonlinear programming [30,31],

was later extended to functional minimisation problems with constraints [2, 25, 41, 42].

The key step in the method is the construction of a gradient flow projected into a feasible

region or space. This approach has been recently combined with the conjugated gradient

method [3]. Here we want to extend it onto energy functional minimisation with con-

straints and to use in the study of ground state solutions of the spin-orbit-coupled spin-1

BEC at extremely low temperatures. The method diminishes energy, conserves constraint

during its implementation and evolves the continuous gradient flow to find the ground

states.

This paper is organised as follows. In Section 2, we define the ground state solutions

for spin-orbit coupled spin-1 BEC at very low temperatures and show that the ground state

solutions satisfy the virial theorem. In Section 3, we use the projection gradient method

to determine the ground state solutions of the spin-orbit-coupled spin-1 BEC and present

two numerical methods for discretising the corresponding continuous gradient flows. In

Section 4, we compare these numerical method and apply one of them to the ground state

of the spin-orbit-coupled spin-1 BEC. Section 5 contains our conclusions and discussion.

2. Ground State of Spin-Orbit Coupled Spin-1 BEC

Let Ω be a bounded domain in Rd . Using the physical Hamiltonian of the spin-orbit-

coupled spin-1 BEC at very low temperature [11,33,43,46,47], we define the dimensionless

energy functional of the spin-orbit-coupled spin-1 BEC by

E (φ1,φ0,φ−1)

=

∫

Ω

f (φ1, φ̄1,∇φ1,∇φ̄1, · · · ,φ−1, φ̄−1,∇φ−1,∇φ̄−1)dx

=

∫

Ω

�

∑

j=1,0,−1

φ̄ jhdφ j +
βn

2
ρ2 +

βs

2
(ρ1 +ρ0 −ρ−1)ρ1

+
βs

2
(ρ1 +ρ−1)ρ0 +

βs

2
(ρ0 +ρ−1 −ρ1)ρ−1 + βs

�

φ̄−1φ
2
0
φ̄1 +φ−1φ̄

2
0
φ1

�
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− γ �(i∂x+∂y)φ0φ̄1+(i∂x − ∂y)φ1φ̄0 + (i∂x+∂y)φ−1φ̄0+ (i∂x−∂y)φ0φ̄−1

�

�

dx, (2.1)

where γ is the spin-orbit coupling strength, φ j = φ j(x), j = 1,0,−1 are the wave func-

tions, ρ j = |φ j |2 and ρ := ρ1 + ρ0 + ρ−1, hd := −(1/2)△+ V , and βn, βs are constants,

respectively, related to the mean-field spin-independent and spin-exchange interactions.

The wave functions are assumed to exponentially decay on Rd and vanish on the boundary

∂Ω. Moreover, the wave functions φ j , j = 1,0,−1 are confined to the constraint

∫

Ω

g(φ1, φ̄1,φ0, φ̄0,φ−1, φ̄−1) dx=

∫

Ω

∑

j=1,0,−1

|φ j(x)|2 dx− 1= 0. (2.2)

We are most interested in the ground state solution Φg = (φ
g

1
,φ

g

0
,φ

g

−1
) of the energy func-

tional (2.1) under the constraint (2.2) — i.e. we consider the following problem:

Find Φg = (φ
g

1
,φ

g

0
,φ

g

−1
) ∈ S such that

E g := E(φ
g

1
,φ

g

0
,φ

g

−1
) =min

Φ∈S
E(Φ), (2.3)

where

S :=

(

(Φ = (φ1,φ0,φ−1)|
∑

j=1,0,−1

∫

Ω

|φ j(x)|2 dx= 1

)

. (2.4)

Writing the functional E (φ1,φ0,φ−1) as

E (φ1,φ0,φ−1) = Ekin + Epot + Espin + Esoc,

with

Ekin =
1

2

∫

Ω

�

1
∑

k=−1

|∇φk|2
�

dx, Epot =

∫

Ω

�

1
∑

k=−1

Vd(x)|φk|2
�

dx,

Espin =

∫

Ω

�

∑

j=1,0,−1

βn

2
ρ2 +

βs

2
(ρ1 +ρ0 −ρ−1)ρ1 +

βs

2
(ρ1 +ρ−1)ρ0

+
βs

2
(ρ0 +ρ−1 −ρ1)ρ−1 + βs

�

φ̄−1φ
2
0
φ̄1 +φ−1φ̄

2
0
φ1

�

�

dx,

and

Esoc = −γ
∫

Ω

�

(i∂x + ∂y)φ0φ̄1 + (i∂x − ∂y)φ1φ̄0

+(i∂x + ∂y)φ−1φ̄0 + (i∂x − ∂y)φ0φ̄−1

�

dx,

we can describe the ground state solutions by the following virial theorem.
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Theorem 2.1. If Φg =
�

φ
g

1
,φ

g

0
,φ

g

−1

�

is the exact ground state solution of (2.1), then

2Eskin (Φ
g)− 2Epot (Φ

g) + dEspin (Φ
g) + Esoc (Φ

g) = 0. (2.5)

Proof. Let d = 1,2,3. Introducing trial functions φ0
k
(x), k = 1,0,−1 by

φ0
k
(x) = (1+ ε)d/2φ

g

k
((1+ ε)x) ,

we write the new evaluation of E
�

Φ
0
�

as

E(ε) ≡ E
�

Φ
0
�

= E
�

φ0
1
(x),φ0

0
(x),φ0

−1
(x)
�

= (1+ ε)2Ekin (Φ
g) +

1

(1+ ε)2
Epot (Φ

g)

+ (1+ ε)d Espin (Φ
g) + (1+ ε)Esoc (Φ

g) . (2.6)

Since Φg =
�

φ
g

1
(x),φ

g

0
(x),φ

g

−1
(x)
�

is the exact ground state solution, the function E(ε) has

a minimum at ε = 0, hence

∂ E(ε)

∂ ε
|ε=0 = 0. (2.7)

Substituting (2.6) into the Eq. (2.7) leads to the relation (2.5).

3. Projection Gradient Method for Ground States

In this section, we use the PGM in order to find the ground states of the spin-orbit

coupled spin-1 BECs, which is the global minima of the energy functional (2.1) under the

constraint (2.2). The construction of PGM consists in three steps:

1. Write the minimisation problem corresponding the given energy functional and con-

strain conditions.

2. Define a projected continuous gradient flows (CGFs) with Lagrangian multipliers as-

sociated with constrain conditions.

3. Discretise the CGFs and apply a conservative numerical methods — e.g. a finite dif-

ference or a finite element method.

For more details, we refer the reader to [41,42].

To find the minimiser of (2.3), we consider the following CGFs:

∂tφ1 = −
∂ f

∂ φ̄1

+ div

�

∂ f

∂∇φ̄1

�

+λ
∂ g

∂ φ̄1

=

�

1

2
∆− V − βnρ

�

φ1 − βs(ρ1 +ρ0 −ρ−1)φ1 − βsφ̄−1φ
2
0
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+ γ(i∂x + ∂y)φ0 + λφ1, (3.1)

∂tφ0 = −
∂ f

∂ φ̄0

+ div

�

∂ f

∂∇φ̄0

�

+λ
∂ g

∂ φ̄0

=

�

1

2
∆− V − βnρ

�

φ0 − βs(ρ1 +ρ−1)φ0 − 2βsφ1φ−1φ̄0

+ γ(i∂x − ∂y)φ1 + γ(i∂x + ∂y)φ−1 +λφ0, (3.2)

∂tφ−1 = −
∂ f

∂ φ̄−1

+ div

�

∂ f

∂∇φ̄−1

�

+λ
∂ g

∂ φ̄−1

=

�

1

2
∆− V − βnρ

�

φ−1 − βs(ρ0 +ρ−1 −ρ1)ψ−1 − βsφ̄1φ
2
0

+ γ(i∂x − ∂y)φ0 + λφ−1, (3.3)

with the initial conditions

φ1(x, t = 0) = φ0
1(x), φ0(x, t = 0) = φ0

0(x), φ−1(x, t = 0) = φ0
−1(x), (3.4)

and the Dirichlet zero boundary condition. We note that λ is determined by the equation

λ=

∫

Ω

¦ ∑

j=1,0,−1

φ̄ jhdφ j + βnρ
2 + βs(ρ1 +ρ0 −ρ−1)ρ1

+ βs(ρ1 +ρ−1)ρ0 + βs(ρ0 +ρ−1 −ρ1)ρ−1

+ 2λs

�

φ̄−1φ
2
0
φ̄1 +φ−1(φ̄0)

2φ1

� −γ �(i∂x + ∂y)φ0φ̄1 + (i∂x − ∂y)φ1φ̄0

+ (i∂x + ∂y)φ−1φ̄0 + (i∂x − ∂y)φ0φ̄−1

�
©

dx

�∫

Ω

�|φ1|2 + |φ0|2 + |φ−1|2
�

dx.

The following theorem plays an important role in computing the ground states of the spin-

orbit-coupled spin-1 BECs.

Theorem 3.1. If CGFs (3.1)-(3.3) is provided with Dirichlet zero boundary conditions and

the initial conditions (3.4), then the relations

(1)
∑

j=1,0,−1

||φ j(x, t)||2 =
∑

j=1,0,−1

||φ0
j
(x)||2,

(2)
∂

d t
E(φ1(x, t),φ0(x, t),φ−1(x, t)) ≤ 0,

hold.

The proof of this result is analogous to the proof of Lemma 3.1 in [41].

Thus CGFs (3.1)-(3.3) has norm conservation and energy diminishing properties. The

first one guaranties that the gradient flows (3.1)-(3.3) always belong to the corresponding

feasible space (2.4). Moreover, if t tends to∞, the vector (φ1(x, t),φ0(x, t),φ−1(x, t))
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approaches a local minimum of the energy functional E (φ1(x, t),φ0(x, t),φ−1(x, t)), and

for suitable initial data
�

φ1(x, 0),φ0(x, 0), φ−1(x, 0)
�

one has

φ j(x, t)→ φg

j
(x), j = 1,0,−1 as t →∞. (3.5)

Let us now consider two numerical methods for the CGFs (3.1)-(3.3). The first one

— viz. the PGM, allows us the direct discretisation of the CGFs (3.1)-(3.3) by the Crank-

Nicolson scheme in time. Thus

φn+1
1
−φn

1

△t
=

�

1

2
∆− V − βnρ

n+1/2

�

φ
n+1/2
1

− βs(ρ
n+1/2
1

+ρ
n+1/2
0
−ρn+1/2
−1

)φ
n+1/2
1
− βsφ̄

n+1/2
−1

�

φ
n+1/2
0

�2

+ γ(i∂x + ∂y)φ
n+1/2
0

+λn+1/2φ
n+1/2
1

, (3.6)

φn+1
0
−φn

0

△t
=

�

1

2
∆− V − βnρ

n+1/2

�

φ
n+1/2
0
− βs(ρ

n+1/2
1

+ρ
n+1/2
−1

)φ
n+1/2
0

− 2βsφ
n+1/2
1

φ
n+1/2
−1

φ̄
n+1/2
0

+ γ(i∂x − ∂y)φ
n+1/2
1

+ γ(i∂x + ∂y)φ
n+1/2
−1

+λn+1/2φ
n+1/2
0

, (3.7)

φn+1
−1
−φn
−1

△t
=

�

1

2
∆− V − βnρ

n+1/2

�

φ
n+1/2
−1

− βs(ρ
n+1/2
0

+ρ
n+1/2
−1
−ρn+1/2

1
)ψ

n+1/2
−1
− βsφ̄

n+1/2
1

�

φ
n+1/2
0

�2

+ γ(i∂x − ∂y)φ
n+1/2
0

+λn+1/2φ
n+1/2
−1

, (3.8)

where φn
j
= φ(x, tn), j = 1,0,−1 for all tn = n△t, ρn

j
= |φn

j
|2, φ

n+1/2
j

= (φn
j
+φn+1

j
)/2

and ρ
n+1/2
j

= (ρn
j
+ρn+1

j
)/2. Besides, the integral term λn+1/2 in (3.6)-(3.8) is determined

as

λn+1/2 =

∫

Ω

�

∑

j=1,0,−1

φ̄
n+1/2
j

hdφ
n+1/2
j

+ βn

�

ρn+1/2
�2

+βs(ρ
n+1/2
1

+ρ
n+1/2
0
−ρn+1/2
−1

)ρ
n+1/2
1

+βs(ρ
n+1/2
1

+ρ
n+1/2
−1

)ρ
n+1/2
0

+ βs(ρ
n+1/2
0

+ρ
n+1/2
−1
−ρn+1/2

1
)ρ

n+1/2
−1

+2λs

�

φ̄
n+1/2
−1

�

φ
n+1/2
0

�2
φ̄

n+1/2
1

+φ
n+1/2
−1

�

φ̄
n+1/2
0

�2
φ

n+1/2
1

�

−γ
�

(i∂x+∂y)φ
n+1/2
0

φ̄
n+1/2
1

+ (i∂x − ∂y)φ
n+1/2
1

φ̄
n+1/2
0

+ (i∂x + ∂y)φ
n+1/2
−1

φ̄
n+1/2
0

+(i∂x−∂y)φ
n+1/2
0

φ̄
n+1/2
−1

�

�

dx

�∫

Ω

�

|φn+1/2
1
|2+|φn+1/2

0
|2 + |φn+1/2

−1
|2
�

dx. (3.9)

The semi-discretised system (3.6)-(3.8) can be discretised in space by the central finite

difference method and the integral term λ1/2 in (3.9) by the composite trapezoidal rule.

We also can solve the CGFs (3.1)-(3.3) by the gradient flow with discrete normalisation

(GFDN) — cf. [5]. It can be described as follows:
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1. Find the approximate values φ j(x, t−n+1), j = 1,0,−1 for the gradient flow from tn to

tn+1 from the equations

∂tφ1 =

�

1

2
∆− V − βnρ

�

φ1 − βs(ρ1 +ρ0 −ρ−1)φ1 − βsφ̄−1φ
2
0

+ γ(i∂x + ∂y)φ0, (3.10)

∂tφ0 =

�

1

2
∆− V − βnρ

�

φ0 − βs(ρ1 +ρ−1)φ0 − 2βsφ1φ−1φ̄0

+ γ(i∂x − ∂y)φ1 + γ(i∂x + ∂y)φ−1, (3.11)

∂tφ−1 =

�

1

2
∆− V − βnρ

�

φ−1 − βs(ρ0 +ρ−1 −ρ1)ψ−1 − βsφ̄1φ
2
0

+ γ(i∂x − ∂y)φ0. (3.12)

2. Project the approximate solution at time tn+1 into feasible space S with manual dis-

crete normalisation

φ j(x, tn+1) =
φ j(x, t−

n+1
)

q

||φ1(x, t−
n+1
)||2 + ||φ0(x, t−

n+1
)||2 + ||φ−1(x, t−

n+1
)||2

, (3.13)

where

||φ j(x, t−n+1)||2 =
∫

Ω

|φ j(x, t−n+1)|2dx.

We note that the GFDN can be considered as first-order time splitting method for

solving the CGFs (3.1)-(3.3) from tn to tn+1.

In the next section, we discretise the Eqs. (3.6)-(3.8) or (3.10)-(3.12) by a second-order

finite difference method in space and by the Crank-Nicolson method in time. The equations

obtained are solved by standard iterative methods, the details of which can be found in

Refs. [7,41,42].

The main difference in the above methods is that the PGM does not require a manual

projection step. Therefore, from computational point of view it is easier to implement

the PGM and to use it in the ground state simulation of energy functionals with multiple

constrain conditions, which is not always possible with the GFDN.

4. Numerical Results

In this section, we use the PGM to determine the ground state solution of a spin-orbit-

coupled spin-1 BEC. The computation domain Ω = (−12,12)d , d = 1,2 is covered by

N = 129 equidistant grid points in each of x - and y-directions. In 2-dimensional case, the

harmonic trap potential function is V (x) = (x2 + y2)/2 and the initial data for the flows

are

φ j(x , y, t = 0) =
1p
6π

e−
x2+y2

2 , j = 1,0,−1.
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4.1. Efficiency test

Let us compare the numerical results obtained by the discretisation methods above.

Note that the PGM requires solving a partial differential equation with an integral term,

while for the GFDN this operation can be replaced by the normalisation at each numerical

time step.

We choose βn = 871.6×M , βs = −17.48×M and γ= 0 in (2.1) in one-dimensional and

two-dimensional situations. Tables 1 and 2 show the computed energy of ground state and

the CPU cost for PGM and GFDN, respectively. We observe that for small M the energies

of the ground states found by PGM and GFDN are close to each other, but for larger M the

PGM provides lower energy values. Moreover, for all parameters M tested, the CPU time

for PGM is comparable or smaller than for GFDN. Hence, the PGM is more efficient.

Table 1: Numerial omparison of the disretisation methods for di�erent parameters M in 1D-ase,
βn = 871.6×M , βs = −17.48×M .

PGM GFDN

M Energy CPU time Energy CPU time

1 7.6760 3.51 7.6765 3.6972

5 22.3053 2.496 22.3398 2.3556

10 35.2219 2.106 35.4459 2.2152

20 54.8234 1.95 56.2557 2.0904

50 99.4696 2.1372 103.6135 2.3281

Table 2: Numerial omparison of the disretisation methods for di�erent parameters M in 2D-ase,
βn = 871.6×M , βs = −17.48×M .

PGM GFDN

M Energy CPU time Energy CPU time

1 3.6750 1131.9276 3.6749 1195.108

5 7.8883 556.5804 7.8884 746.964

10 11.0859 448.5809 11.0858 597.7646

20 15.6234 390.3613 15.6239 475.625

50 23.4159 333.2649 24.6875 415.0563

4.2. Ground states for spin-orbit coupled spin-1 BECs

Now we calculate the ground state of spin-orbit coupled spin-1 BEC by the PGM. In

order to show the properties of the ground states and illustrate Theorem 2.1, we choose

the parameters βn = 871.6×M , βs = 17.48×M and γ = 1 in (2.1) and define the residual

of (2.5) by

ResV = 2Ekin− 2Epot + 2Espin+ Esoc.
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Table 3: Numerial tests for Theorem 2.1. βn = 871.6×M , βs = 17.48×M and γ= 1.

M Ekin Ehar Espin Esoc ResV

1 1.0525 1.7988 1.7031 -1.9504 -0.0367

5 0.9977 3.9226 3.8685 -1.9313 -0.0442

10 0.9707 5.5270 5.4839 -1.9150 -0.0596

20 0.9583 7.8005 7.7657 -1.9109 -0.0638

100 0.9306 17.4230 17.3823 -1.8583 -0.0785

0 100 200 300 400 500 600

0

10

20

30

40

50

60

70

t

 

 

N(t)

E(t)

Figure 1: Norm onservation and energy diminishing property for ground state solutions of the spin-orbit

oupled spin-1 BECs when the CGFs are evolved by the PGM.

Table 3 demonstrates that the ground state solution of spin-orbit coupled spin-1 BEC sat-

isfies Theorem 2.1 for M from 1 to 100. Moreover, Fig. 1 shows that for the gradient flow

(3.6)-(3.8), the total mass

N (t) :=

∫

Ω

∑

j=1,0,−1

|φ j |2 d xd y,

of the approximate solutions is conserved and the corresponding total energy E(t) :=

E(φ1(x , y, t),φ0(x , y, t),φ−1(x , y, t)) decreases when t increases. Thus these numerical

results agree with Theorem 3.1, so that the ground state solution of the spin-orbit coupled

spin-1 BEC satisfies the virial theorem. Next we choose βn = 871.6, βs = 17.48 and dif-

ferent spin-orbit-coupling parameters γ to simulate the stripe pattern ground states — cf.

Fig. 2. Note that the stripe pattern ground state solutions of the spin-1 BECs obtained for

the increasing parameter γ are consistent with observation [43].

Finally we take βn = 871.6 and βs = −17.48 with different spin-orbit-coupling param-

eters γ — cf. Fig. 3 and note that the square-lattice pattern of the ground state solutions



Computing Ground States of Spin-Orbit-Coupling Spin-1 BECs 607

of spin-1 BECs are obtained for the increasing spin-orbit coupling strength γ, which agrees

with the conjecture in [46].

Figs. 2-3 show that the two patterns of the ground states of spin-orbit coupled spin-1

BECs are mainly determined by the sign of the interaction parameter βs, similar to the case

of the general spin-1 BECs. It is well known that for βs > 0 the ground states of spin-1

BECs are antiferromagnetic and they are ferromagnetic if βs < 0 — cf. Ref. [17].
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Figure 2: Density image of ground state solutions for the spin-1 BECs with βn = 871.6, βs = 17.48. First

row: γ= 3. Seond row: γ= 4. (a)(d): |φ g

1 (x , y)|2; (b)(e): |φ g

0 (x , y)|2; ()(f): |φ g

−1(x , y)|2.
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Figure 3: Density image of ground state solutions for the spin-1 BECs with βn = 871.6, βs = −17.48.
First row: γ= 3. Seond Row: γ= 4. (a)(d): |φ g

1 (x , y)|2; (b)(e): |φ g

0 (x , y)|2 ; ()(f): |φ g

−1(x , y)|2.
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5. Conclusions

We proposed a projection gradient method for computing the ground state of spin-

orbit-coupled spin-1 Bose-Einstein condensates, which is, in a sense, an energy functional

minimisation under one constraint. It is shown that this method has the property of energy

diminishing and is constraint conservative if the continuous gradient flows are evolved

to find the ground states of spin-orbit-coupled spin-1 BECs. It is used for computing the

ground state solutions of the spin-orbit-coupled spin-1 BECs with different parameters.

Interesting physical phenomena, such as the stripe-pattern and the square-lattice pattern

of ground states are observed. The method can be extended to the ground state solutions

of spin-orbit-coupled spin-2 Bose-Einstein condensates [16]. This will be done elsewhere.
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